论文标题
网络动态系统的社区集成算法(CIA)
Community Integration Algorithms (CIAs) for Dynamical Systems on Networks
论文作者
论文摘要
大规模网络过程的动力学是所有科学范围内关键现象的基础。大型网络模型的正向模拟通常在计算上是过度的。但是,大多数网络都具有内在的社区结构。我们利用这些社区,并为网络动力学提出快速模拟算法。特别是,汇总输入的节点接收到数值模拟大规模网络动力学的限制因素。我们开发社区整合算法(CIAS)可显着降低功能评估。我们从多项式计算复杂性中获得了大幅度降低。我们在多个应用程序中说明了我们的结果,包括用于同步和cucker-smale系统的经典和高阶库拉莫托型系统,这些系统在合成和现实世界网络上表现出羊群行为。数值比较和理论分析证实了CIAS的鲁棒性和效率。
Dynamics of large-scale network processes underlies crucial phenomena ranging across all sciences. Forward simulation of large network models is often computationally prohibitive. Yet, most networks have intrinsic community structure. We exploit these communities and propose a fast simulation algorithm for network dynamics. In particular, aggregating the inputs a node receives constitutes the limiting factor in numerically simulating large-scale network dynamics. We develop community integration algorithms (CIAs) significantly reducing function-evaluations. We obtain a substantial reduction from polynomial to linear computational complexity. We illustrate our results in multiple applications including classical and higher-order Kuramoto-type systems for synchronisation and Cucker--Smale systems exhibiting flocking behaviour on synthetic as well as real-world networks. Numerical comparison and theoretical analysis confirm the robustness and efficiency of CIAs.