论文标题

面部重新构成几何一致的阴影

Face Relighting with Geometrically Consistent Shadows

论文作者

Hou, Andrew, Sarkis, Michel, Bi, Ning, Tong, Yiying, Liu, Xiaoming

论文摘要

大多数脸部重新处理方法都能够处理弥漫性阴影,但努力处理硬阴影,例如鼻子铸造的阴影。提出处理硬阴影技术的方法通常不会产生几何一致的阴影,因为它们在合成它们的同时不直接利用估计的面部几何形状。我们提出了一种基于射线跟踪的硬阴影合成硬阴影的新型可区分算法,我们将其纳入训练面部重新构图。我们提出的算法直接利用估计的面部几何形状合成几何一致的硬阴影。我们通过对多PIE和FFHQ的定量和定性实验证明,我们的方法比以前的面部重新确定方法产生的几何一致阴影,同时还可以在方向照明下实现最新的面部效果。此外,我们证明了我们可区分的硬影建模可以提高估计面部几何形状的质量,而不是分散的阴影模型。

Most face relighting methods are able to handle diffuse shadows, but struggle to handle hard shadows, such as those cast by the nose. Methods that propose techniques for handling hard shadows often do not produce geometrically consistent shadows since they do not directly leverage the estimated face geometry while synthesizing them. We propose a novel differentiable algorithm for synthesizing hard shadows based on ray tracing, which we incorporate into training our face relighting model. Our proposed algorithm directly utilizes the estimated face geometry to synthesize geometrically consistent hard shadows. We demonstrate through quantitative and qualitative experiments on Multi-PIE and FFHQ that our method produces more geometrically consistent shadows than previous face relighting methods while also achieving state-of-the-art face relighting performance under directional lighting. In addition, we demonstrate that our differentiable hard shadow modeling improves the quality of the estimated face geometry over diffuse shading models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源