论文标题

通过节点编织的欧拉类的多间隙拓扑转换:最小型号,$ pt $连接的节点戒指和手性继承人

Multi-gap topological conversion of Euler class via band-node braiding: minimal models, $PT$-linked nodal rings, and chiral heirs

论文作者

Bouhon, Adrien, Slager, Robert-Jan

论文摘要

在过去的几年中,使用对称特征值指示的方法在表征拓扑带结构方面取得了迅速的进步。然而,最近,该范式无法捕获的多间隙依赖性拓扑阶段的理论和实验兴趣增加了。这些拓扑是由于存在$ c_2t $或$ pt $对称性的编织带变性型,它位于不同的乐队和携带非亚伯式费用之间,并在不同的不变式中引起了诸如$ \ Mathbb {z} $ dalued euler euler class等不同不变的限制。在这里,我们为欧拉阶段提供了一种普遍的公式,该阶段是由它们的同质分类所激发的,该分类与三级系统中单个单位矢量的天际媒介相关,以及四级系统中两个单位矢量的媒介。此外,在采用了从一对次二维欧拉相中构建3D模型的策略后,我们表明,任何两个不等于的Euler阶段之间的相过渡是通过相邻(间隙)淋巴结圈的存在介导的,该循环与次要结节线链接在一起,形成了对应于与辫子或核饰nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nodal nod nod nod nod e node node。介导。此外,链接的相邻节点环的稳定性被证明是由Euler类Monopole电荷与其$ \ Mathbb {Z} $ - 有价值的链接数字匹配的。最终,我们还系统地解决了Euler阶段破坏$ C_2T $或$ PT $对称的后代Chern阶段的转换。这项工作中讨论的所有拓扑阶段均通过明确的最小晶格模型证实。这些模型本身可以直接作为实验搜索的额外动力或用于理论研究的额外动力,从而支持了这种新生的追求。

The past few years have seen rapid progress in characterizing topological band structures using symmetry eigenvalue indicated methods. Recently, however, there has been increasing theoretical and experimental interest in multi-gap dependent topological phases that cannot be captured by this paradigm. These topologies arise by braiding band degeneracies that reside between different bands and carry non-Abelian charges due to the presence of either $C_2T$ or $PT$ symmetry, culminating in different invariants such as $\mathbb{Z}$-valued Euler class. Here, we present a universal formulation for Euler phases motivated by their homotopy classification that is related to the Skyrmion-profile of a single unit-vector in three-level systems, and that of two unit-vectors in four-level systems. In addition, upon employing the strategy of systematically building 3D models from a pair of sub-dimensional Euler phases, we show that phase transitions between any two inequivalent Euler phases are mediated by the presence of adjacent (in-gap) nodal rings linked with sub-gap nodal lines, forming trajectories corresponding to the braiding or debraiding of nodal points. The stability of the linked adjacent nodal rings is furthermore demonstrated to be indicated by an Euler class monopole charge matching with its $\mathbb{Z}$-valued linking numbers. We finally also systematically address the conversion of Euler phases into descendant Chern phases upon breaking the $C_2T$ or $PT$ symmetry. All the topological phases discussed in this work are corroborated with explicit minimal lattice models. These models can themselves directly serve as an extra impetus for experimental searches or be employed for theoretical studies, thereby underpinning the upcoming of this nascent pursuit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源