论文标题

塞拉:在企业网络中排名异常的活动

SIERRA: Ranking Anomalous Activities in Enterprise Networks

论文作者

Lee, Jehyun, Tang, Farren, Thet, Phyo May, Yeoh, Desmond, Rybczynski, Mitch, Divakaran, Dinil Mon

论文摘要

如今,企业在其网络中部署了多个安全企业,例如防火墙,ID,IPS等,以收集与威胁和攻击有关的各种事件。这些事件流入了SIEM(安全信息和事件管理)系统中,以供分析师进行调查并快速做出适当的措施。但是,单个企业收集的事件数量每天很容易遇到数十万,远远超过分析师在给定的预算约束(时间)下可以调查的要多得多。在这项工作中,我们研究了优先考虑可疑事件或异常分析师以进行进一步研究的问题。我们开发了Sierra,该系统将处理事件从多个和不同的中间箱进行记录以检测和对异常活动进行排名。塞拉采取了无监督的方法,因此不依赖地面真相数据。与其他作品不同,塞拉定义了上下文,这些上下文有助于其为分析师提供高度排名的异常点的视觉解释,尽管采用了无监督的模型。我们使用来自企业网络的多个安全中间箱的数月日志来评估Sierra。评估表明,塞拉山脉在网络中检测最高异常的能力,同时胜过现有异常检测算法的天真应用以及基于SIEM的最先进的基于SIEM的异常检测解决方案。

An enterprise today deploys multiple security middleboxes such as firewalls, IDS, IPS, etc. in its network to collect different kinds of events related to threats and attacks. These events are streamed into a SIEM (Security Information and Event Management) system for analysts to investigate and respond quickly with appropriate actions. However, the number of events collected for a single enterprise can easily run into hundreds of thousands per day, much more than what analysts can investigate under a given budget constraint (time). In this work, we look into the problem of prioritizing suspicious events or anomalies to analysts for further investigation. We develop SIERRA, a system that processes event logs from multiple and diverse middleboxes to detect and rank anomalous activities. SIERRA takes an unsupervised approach and therefore has no dependence on ground truth data. Different from other works, SIERRA defines contexts, that help it to provide visual explanations of highly-ranked anomalous points to analysts, despite employing unsupervised models. We evaluate SIERRA using months of logs from multiple security middleboxes of an enterprise network. The evaluations demonstrate the capability of SIERRA to detect top anomalies in a network while outperforming naive application of existing anomaly detection algorithms as well as a state-of-the-art SIEM-based anomaly detection solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源