论文标题
自动检测SDSS图像的低表面亮度星系
Automatic detection of low surface brightness galaxies from SDSS images
论文作者
论文摘要
低表面亮度(LSB)星系是中央表面亮度比夜空的星系。由于LSB星系的微弱性质和可比的天空背景,因此很难从大型天空调查中自动且有效地搜索LSB星系。在这项研究中,我们建立了低表面亮度星系自动检测模型(LSBG-AD),该模型是数据驱动的模型,用于从斯隆数字天空调查(SDSS)图像端到端检测LSB星系。基于深度学习的对象检测技术将应用于SDSS现场图像,以识别LSB星系并同时估算其坐标。将LSBG-AD应用于1120个SDSS图像,我们检测到1197 LSB Galaxy候选物,其中1081个样品已知,116个样本是新发现的候选者。由模型搜索的候选者的B波段中央表面亮度范围从22 mag arcsec $^ { - 2} $到24 mag arcsec $^ { - 2} $,与标准样品的表面亮度分布非常一致。 96.46 \%的LSB Galaxy候选者的轴比($ b/a $)大于0.3,其中92.04 \%的\%\%具有$ fracdev \ _r $ \ textless 0.4,这也与标准样本一致。结果表明,LSBG-AD模型很好地了解了训练样品的LSB星系的特征,并且可用于搜索LSB星系,而无需使用光度参数。接下来,该方法将用于开发有效的算法,以检测下一代观测值大量图像的LSB星系。
Low surface brightness (LSB) galaxies are galaxies with central surface brightness fainter than the night sky. Due to the faint nature of LSB galaxies and the comparable sky background, it is difficult to search LSB galaxies automatically and efficiently from large sky survey. In this study, we established the Low Surface Brightness Galaxies Auto Detect model (LSBG-AD), which is a data-driven model for end-to-end detection of LSB galaxies from Sloan Digital Sky Survey (SDSS) images. Object detection techniques based on deep learning are applied to the SDSS field images to identify LSB galaxies and estimate their coordinates at the same time. Applying LSBG-AD to 1120 SDSS images, we detected 1197 LSB galaxy candidates, of which 1081 samples are already known and 116 samples are newly found candidates. The B-band central surface brightness of the candidates searched by the model ranges from 22 mag arcsec $^ {- 2} $ to 24 mag arcsec $^ {- 2} $, quite consistent with the surface brightness distribution of the standard sample. 96.46\% of LSB galaxy candidates have an axis ratio ($b/a$) greater than 0.3, and 92.04\% of them have $fracDev\_r$\textless 0.4, which is also consistent with the standard sample. The results show that the LSBG-AD model learns the features of LSB galaxies of the training samples well, and can be used to search LSB galaxies without using photometric parameters. Next, this method will be used to develop efficient algorithms to detect LSB galaxies from massive images of the next generation observatories.