论文标题

Teichmüller空间的谐波地图紧凑型riemann表面

The harmonic maps compactification of Teichmüller spaces for punctured Riemann surfaces

论文作者

Sakai, Kento

论文摘要

沃尔夫通过使用谐波图,从Teichmüller空间到封闭的Riemann表面上的二次差异空间的同态形态。此外,使用谐波图射线,他给出了Teichmüller空间的压实,并表明它与Thurston紧凑型相吻合。在本文中,我们将谐波地图紧凑型扩展到刺穿的riemann表面的Teichmüller空间,并表明它仍然与瑟斯顿紧凑型相吻合。

Wolf gave a homeomorphism from the Teichmüller space to the space of quadratic differentials on a closed Riemann surface by using harmonic maps. Moreover, using harmonic maps rays, he gave a compactification of the Teichmüller space and show that it coincides with the Thurston compactification. In this paper, we extend the harmonic maps compactification to the Teichmüller spaces of punctured Riemann surfaces, and show that it still coincides with the Thurston compactification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源