论文标题

基于占用网格图的端到端轨迹分布预测

End-to-End Trajectory Distribution Prediction Based on Occupancy Grid Maps

论文作者

Guo, Ke, Liu, Wenxi, Pan, Jia

论文摘要

在本文中,鉴于社交场景图像和历史轨迹,我们旨在预测现实世界中移动代理的未来轨迹分布。然而,这是一项艰巨的任务,因为基地分布是未知且无法观察到的,而只有一个样本可以用于监督模型学习,这很容易偏向偏见。最近的作品着重于预测各种轨迹,以涵盖实际分布的所有模式,但它们可能会鄙视精度,从而对不切实际的预测给予过多的信用。为了解决这个问题,我们使用占用网格图作为对称和符合场景的近似近似地对称跨膜的分布来了解地面真相分布的近似,这可以有效地惩罚不可能的预测。具体而言,我们提出了基于逆增强学习基于多模式轨迹分布预测框架,该框架学习以端到端的方式通过近似值迭代网络进行计划。此外,基于预测的分布,我们通过基于变压器的网络生成一小部分代表性轨迹,该网络的注意机制有助于建模轨迹的关系。在实验中,我们的方法在斯坦福无人机数据集和相交无人机数据集上实现了最先进的性能。

In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories. Yet, it is a challenging task because the ground-truth distribution is unknown and unobservable, while only one of its samples can be applied for supervising model learning, which is prone to bias. Most recent works focus on predicting diverse trajectories in order to cover all modes of the real distribution, but they may despise the precision and thus give too much credit to unrealistic predictions. To address the issue, we learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution, which can effectively penalize unlikely predictions. In specific, we present an inverse reinforcement learning based multi-modal trajectory distribution forecasting framework that learns to plan by an approximate value iteration network in an end-to-end manner. Besides, based on the predicted distribution, we generate a small set of representative trajectories through a differentiable Transformer-based network, whose attention mechanism helps to model the relations of trajectories. In experiments, our method achieves state-of-the-art performance on the Stanford Drone Dataset and Intersection Drone Dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源