论文标题
散射培养基中的确定性Terahertz波控制
Deterministic Terahertz wave control in scattering media
论文作者
论文摘要
宽带光脉冲的散射辅助合成被认为具有跨学科的基础和应用重要性。达到全波合成通常需要评估瞬时电场的方法,即绝对电磁阶段。这些通常无法使用已建立的方法来散射辅助脉冲包膜和相塑形。缺乏场敏感性还导致了复杂的间接方法来评估散射时空特性。 Terahertz频域可能会提供一些独特的新可能性,这要归功于对散射电场进行绝对测量的方法,而不是基于光学强度的诊断。一个有趣的概念问题是,这种额外的自由度是否可以导致不同类型的方法来塑造波和直接波动控制。在这项工作中,我们从理论上研究了确定性方案,以实现由散射介质介导的宽带,时空波形控制的宽带,时空波形控制。通过时间域光谱的直接场访问实现了一个过程,在该过程中,通过最少的实验努力评估了培养基的磁场和散射矩阵。然后,确定了任意目标输出场波形的照明条件。此外,完整的字段知识可以像仅相位的掩码和光学涡旋一样,重建具有复杂相位剖面的现场分布,这是基于强度测量的光学频率的传统实现的一项艰巨的任务,这是基于强度测量的辅助测量。
Scattering-assisted synthesis of broadband optical pulses is recognized to have a cross-disciplinary funda-mental and application importance. Achieving full-waveform synthesis generally requires means for assessing the instantaneous electric field, i.e. the absolute electromagnetic phase. These are generally not accessible to established methodologies for scattering-assisted pulse envelope and phase shaping. The lack of field sensitivity also results in complex indirect approaches to evaluate the scattering space-time properties. The terahertz frequency domain potentially offers some distinctive new possibilities thanks to the availability of methods to perform absolute measurements of the scattered electric field, as opposed to optical intensity-based diagnostics. An interesting conceptual question is whether this additional degree of freedom can lead to different types of methodologies toward wave shaping and to a direct field-waveform control. In this work, we theoretically investigate a deterministic scheme to achieve broadband, spatio-temporal waveform control of terahertz fields mediated by a scattering medium. The direct field access via Time-Domain Spectroscopy enables a process in which the field and scattering matrix of the medium are assessed with minimal experimental efforts. Then, the illumination conditions for an arbitrary targeted output field waveform are deterministically determined. In addition, the complete field knowledge enables reconstructing field distributions with complex phase profiles, as in the case of phase-only masks and optical vortices, a significantly challenging task for traditional implementations at optical frequencies based on intensity measurements aided with interferometric techniques.