论文标题
严格多面双曲线3个manifolds的边界上的双重指标
Dual metrics on the boundary of strictly polyhedral hyperbolic 3-manifolds
论文作者
论文摘要
让$ m $是一个面向紧凑的3个manifold,其非空边界由genii $> 1 $的表面组成,使得$ m $的内部夸张。我们表明,对于$ \ partial m $上的每个球形锥体$ d $ d $ d $,使所有锥形角度都大于$2π$,并且在$ m $中易于收缩的所有封闭的大地测量机构的长度大于$2π$,存在一个独特的严格多面性超元$ m $ $ d $ $ d $,$ d $是$ $ $ $ $ $ $。
Let $M$ be a compact oriented 3-manifold with non-empty boundary consisting of surfaces of genii $>1$ such that the interior of $M$ is hyperbolizable. We show that for each spherical cone-metric $d$ on $\partial M$ such that all cone-angles are greater than $2π$ and the lengths of all closed geodesics that are contractible in $M$ are greater than $2π$ there exists a unique strictly polyhedral hyperbolic metric on $M$ such that $d$ is the induced dual metric on $\partial M$.