论文标题
长尾对象检测的logit归一化
Logit Normalization for Long-tail Object Detection
论文作者
论文摘要
表现出偏差分布的现实世界数据对现有对象探测器构成了严重的挑战。此外,检测器中的采样器导致训练标签分布的变化,而背景与前景样本的巨大比例严重损害了前景分类。为了减轻这些问题,在本文中,我们提出了Logit归一化(LOGN),这是一种简单的技术,可以自我校准以与批处理归一化相似的方式自我校准检测器的分类逻辑。通常,我们的LOGN是无训练和不需要的(即不需要额外的培训和调整过程),模型和标签分布分配不可能的(即对不同类型的检测器和数据集的概括),也可以插件(即直接应用程序,没有任何铃铛和吹声声)。在LVIS数据集上进行的广泛实验表明,LOGN与具有各种探测器和骨架的最先进方法相比。我们还提供了有关logn不同方面的深入研究。关于Imagenet-LT的进一步实验揭示了其竞争力和普遍性。我们的日志可以作为长尾对象检测的强大基准,并有望激发该领域的未来研究。代码和训练有素的模型将在https://github.com/mcg-nju/logn上公开获得。
Real-world data exhibiting skewed distributions pose a serious challenge to existing object detectors. Moreover, the samplers in detectors lead to shifted training label distributions, while the tremendous proportion of background to foreground samples severely harms foreground classification. To mitigate these issues, in this paper, we propose Logit Normalization (LogN), a simple technique to self-calibrate the classified logits of detectors in a similar way to batch normalization. In general, our LogN is training- and tuning-free (i.e. require no extra training and tuning process), model- and label distribution-agnostic (i.e. generalization to different kinds of detectors and datasets), and also plug-and-play (i.e. direct application without any bells and whistles). Extensive experiments on the LVIS dataset demonstrate superior performance of LogN to state-of-the-art methods with various detectors and backbones. We also provide in-depth studies on different aspects of our LogN. Further experiments on ImageNet-LT reveal its competitiveness and generalizability. Our LogN can serve as a strong baseline for long-tail object detection and is expected to inspire future research in this field. Code and trained models will be publicly available at https://github.com/MCG-NJU/LogN.