论文标题
Rényi熵在相互作用的模型中的生长和准粒子图片的崩溃
Growth of Rényi Entropies in Interacting Integrable Models and the Breakdown of the Quasiparticle Picture
论文作者
论文摘要
Rényi熵在概念上是有价值的,并且对著名的von Neumann纠缠熵的概括是有价值的,并且具有实验性相关的概括。在干净的量子多体系统中进行量子淬火后,它们在时间上通常显示出通用线性生长,然后饱和。虽然当纠缠饱和时,有限子系统基本上处于局部平衡,但在生长阶段,它确实是平衡的。特别是,增长的斜率具有有关系统动力学性质的重要信息,其表征是当前研究的关键目标。在这里,我们表明,可以通过时空二元转换来确定rényi熵的斜率。从本质上讲,我们认为斜率与通过交换时空的作用获得的模型的熵固定密度一致。因此,非常令人惊讶的是,纠缠的斜率表示为平衡量。我们使用此观察结果来找到一个明确的精确公式,以在所有可通过热力学的伯特Ansatz治疗的整合模型中的rényi熵坡度,并从可整合的初始状态发展。有趣的是,只有在von Neumann限制中,才能以准颗粒的图像来理解该公式。
Rényi entropies are conceptually valuable and experimentally relevant generalisations of the celebrated von Neumann entanglement entropy. After a quantum quench in a clean quantum many-body system they generically display a universal linear growth in time followed by saturation. While a finite subsystem is essentially at local equilibrium when the entanglement saturates, it is genuinely out-of-equilibrium in the growth phase. In particular, the slope of the growth carries vital information on the nature of the system's dynamics, and its characterisation is a key objective of current research. Here we show that the slope of Rényi entropies can be determined by means of a spacetime duality transformation. In essence, we argue that the slope coincides with the stationary density of entropy of the model obtained by exchanging the roles of space and time. Therefore, very surprisingly, the slope of the entanglement is expressed as an equilibrium quantity. We use this observation to find an explicit exact formula for the slope of Rényi entropies in all integrable models treatable by thermodynamic Bethe ansatz and evolving from integrable initial states. Interestingly, this formula can be understood in terms of a quasiparticle picture only in the von Neumann limit.