论文标题

Mystyle:个性化生成剂

MyStyle: A Personalized Generative Prior

论文作者

Nitzan, Yotam, Aberman, Kfir, He, Qiurui, Liba, Orly, Yarom, Michal, Gandelsman, Yossi, Mosseri, Inbar, Pritch, Yael, Cohen-or, Daniel

论文摘要

我们介绍了Mystyle,这是一个个性化的深层生成物,并接受了几张个人的镜头。 Mystyle允许重建,增强和编辑特定人的图像,从而使输出忠于该人的关键面部特征。鉴于一个人的肖像图像(〜100),我们调整了验证的样式面部发电机的重量,以形成潜在空间中的本地,低维,个性化的歧管。我们表明,该歧管构成了一个个性化区域,该区域涵盖了与个人的不同肖像图像相关的潜在代码。此外,我们证明我们获得了个性化的生成剂,并提出了一种将其应用于各种不适的图像增强问题的统一方法,例如内部和超分辨率和语义编辑。使用个性化的生成剂,我们获得对输入图像表现出高保真性的输出,并且也忠于参考集中个人的关键面部特征。我们通过众多可识别的个体的公平使用图像来证明我们的方法,我们对他们有对预期结果进行定性评估的先验知识。我们评估了我们的方法与几个基线的基线,并表明我们的个性化先验,定量和定性地表现优于最先进的替代方案。

We introduce MyStyle, a personalized deep generative prior trained with a few shots of an individual. MyStyle allows to reconstruct, enhance and edit images of a specific person, such that the output is faithful to the person's key facial characteristics. Given a small reference set of portrait images of a person (~100), we tune the weights of a pretrained StyleGAN face generator to form a local, low-dimensional, personalized manifold in the latent space. We show that this manifold constitutes a personalized region that spans latent codes associated with diverse portrait images of the individual. Moreover, we demonstrate that we obtain a personalized generative prior, and propose a unified approach to apply it to various ill-posed image enhancement problems, such as inpainting and super-resolution, as well as semantic editing. Using the personalized generative prior we obtain outputs that exhibit high-fidelity to the input images and are also faithful to the key facial characteristics of the individual in the reference set. We demonstrate our method with fair-use images of numerous widely recognizable individuals for whom we have the prior knowledge for a qualitative evaluation of the expected outcome. We evaluate our approach against few-shots baselines and show that our personalized prior, quantitatively and qualitatively, outperforms state-of-the-art alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源