论文标题

稳定性和消极指标的在线估计

On-line Estimation of Stability and Passivity Metrics

论文作者

Welikala, Shirantha, Lin, Hai, Antsaklis, Panos J.

论文摘要

我们考虑使用其输入输入输入数据的非线性系统对关键特征参数(例如L_2-GAIN(L2G),输入FeedForward的消极索引(IFP)(IFP)和输出反馈无源索引(IFP)等关键特征参数进行评估的问题。通常,对这种“系统索引”的准确度量可以实现系统控制设计技术的应用。此外,如果可以在线评估此类系统索引,则可以将它们利用为设备智能控制器重新配置和容忍故障控制技术。但是,此类系统指数的现有估计方法(即L2G,IFP和OFP)主要是脱机,计算效率低下,并且在某些特定的初始/终端条件下需要大量实际或合成生成的输入输出轨迹数据。另一方面,现有的在线估计方法采用基于平均的方法,该方法可能是最佳的,计算效率低下且容易估计饱和的方法。在本文中,为了克服这些挑战(在系统索引的在线估计中),我们在特定类别的分数函数优化问题上建立并利用了几个有趣的理论结果。为了进行比较,为相同的在线估计问题提供了现有基于平均方法的详细信息。最后,讨论了几个数值示例,以证明所提出的在线估计方法并强调我们的贡献。

We consider the problem of on-line evaluation of critical characteristic parameters such as the L_2-gain (L2G), input feedforward passivity index (IFP) and output feedback passivity index (OFP) of non-linear systems using their input-output data. Typically, having an accurate measure of such "system indices" enables the application of systematic control design techniques. Moreover, if such system indices can efficiently be evaluated on-line, they can be exploited to device intelligent controller reconfiguration and fault-tolerant control techniques. However, the existing estimation methods of such system indices (i.e., L2G, IFP and OFP) are predominantly off-line, computationally inefficient, and require a large amount of actual or synthetically generated input-output trajectory data under some specific initial/terminal conditions. On the other hand, the existing on-line estimation methods take an averaging-based approach, which may be sub-optimal, computationally inefficient and susceptible to estimate saturation. In this paper, to overcome these challenges (in the on-line estimation of system indices), we establish and exploit several interesting theoretical results on a particular class of fractional function optimization problems. For comparison purposes, the details of an existing averaging-based approach are provided for the same on-line estimation problem. Finally, several numerical examples are discussed to demonstrate the proposed on-line estimation approach and to highlight our contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源