论文标题

来自边际独立性的全息熵锥

The holographic entropy cone from marginal independence

论文作者

Hernández-Cuenca, Sergio, Hubeny, Veronika E., Rota, Massimiliano

论文摘要

全息熵锥体表征了纠缠熵之间的关系,用于在描述经典散装几何形状的任何状态下全息CFT边界时空的空间分区。我们认为,对于任意数量的各方,可以从更基本的数据中重建全息熵锥,仅由量子熵的亚加成决定。我们对全息纠缠的图形模型进行了某些猜想,为此我们提供了有力的证据,并严格地证明它们都暗示了这种重建是可能的。我们的猜想(仅仅是最弱的)进一步暗示了必要的数据非常简单。从本质上讲,所有人都需要知道重建全息熵锥,这是这种更简单的“亚additivitive锥”的极端射线的某个子集,即可以在全息图中实现的那些。将几何状态的令人困惑的纠缠结构重塑为原始的构建块,为将全息图的本质提升为出现经典的散装时空。

The holographic entropy cone characterizes the relations between entanglement entropies for a spatial partitioning of the boundary spacetime of a holographic CFT in any state describing a classical bulk geometry. We argue that the holographic entropy cone, for an arbitrary number of parties, can be reconstructed from more fundamental data determined solely by subadditivity of quantum entropy. We formulate certain conjectures about graph models of holographic entanglement, for which we provide strong evidence, and rigorously prove that they all imply that such a reconstruction is possible. Our conjectures (except only for the weakest) further imply that the necessary data is remarkably simple. In essence, all one needs to know to reconstruct the holographic entropy cone, is a certain subset of the extreme rays of this simpler "subadditivity cone", namely those which can be realized in holography. This recasting of the bewildering entanglement structure of geometric states into primal building blocks paves the way to distilling the essence of holography for the emergence of a classical bulk spacetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源