论文标题

高阶磁水动力学数字

Higher-order magnetohydrodynamic numerics

论文作者

Teissier, Jean-Mathieu, Müller, Wolf-Christian

论文摘要

在本章中,我们旨在介绍超出广泛接受的二阶数字范式所需的基本技术。我们专门针对有限体积方案,用于在流体近似中发生的双曲线保护定律,例如理想磁流失动力学的方程或气体动力学的Euler方程。为了清楚起见,简单的四阶理想磁流失动力(MHD)求解器允许模拟强烈震惊的系统是一个有益的示例。仅在高阶数字世界中或主要出现的问题被赋予特定重点。替代算法以及改进和改进是引起的,并在文献中引用。作为应用的一个例子,提出了一些有关可压缩湍流的结果。

In this chapter, we aim at presenting the basic techniques necessary to go beyond the widely accepted paradigm of second-order numerics. We specifically focus on finite-volume schemes for hyperbolic conservation laws occuring in fluid approximations such as the equations of ideal magnetohydrodynamics or the Euler equations of gas dynamics. For the sake of clarity, a simple fourth-order ideal magnetohydrodynamic (MHD) solver which allows to simulate strongly shocked systems serves as an instructive example. Issues that only or mainly arise in the world of higher-order numerics are given specific focus. Alternative algorithms as well as refinements and improvements are dicussed and are referenced to in the literature. As an example of application, some results on decaying compressible turbulence are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源