论文标题

视觉效果多模式,用于使用增强学习的可变形线性对象

Visual-Tactile Multimodality for Following Deformable Linear Objects Using Reinforcement Learning

论文作者

Pecyna, Leszek, Dong, Siyuan, Luo, Shan

论文摘要

对机器人的操纵对象是一项具有挑战性的任务。使用单个感官输入来跟踪此类对象的行为是有问题的:可以将视觉予以阻塞,而触觉输入无法捕获对任务有用的全局信息。在本文中,我们研究了将视觉和触觉输入一起使用的问题,以完成第一次遵循可变形线性对象的任务。与使用单个感应方式相比,我们使用不同的感应方式创建了一种增强式学习剂,并研究如何使用视觉效果融合来提高其行为。为此,我们在模拟中开发了一个基准,用于使用多模式传感输入来操纵可变形的线性对象。代理商的策略使用蒸馏信息,例如,在视觉和触觉角度上既有对象的姿势,而不是原始的传感信号,从而可以直接传输到真实的环境中。通过这种方式,我们消除了感知系统和学习的控制政策。我们的广泛实验表明,视觉和触觉输入以及本体感受的使用使代理可以在最多92%的情况下完成任务,而仅当只给出了一个信号时,则可以完成任务。我们的结果可以为触觉传感器的未来设计和可变形物体操纵提供宝贵的见解。

Manipulation of deformable objects is a challenging task for a robot. It will be problematic to use a single sensory input to track the behaviour of such objects: vision can be subjected to occlusions, whereas tactile inputs cannot capture the global information that is useful for the task. In this paper, we study the problem of using vision and tactile inputs together to complete the task of following deformable linear objects, for the first time. We create a Reinforcement Learning agent using different sensing modalities and investigate how its behaviour can be boosted using visual-tactile fusion, compared to using a single sensing modality. To this end, we developed a benchmark in simulation for manipulating the deformable linear objects using multimodal sensing inputs. The policy of the agent uses distilled information, e.g., the pose of the object in both visual and tactile perspectives, instead of the raw sensing signals, so that it can be directly transferred to real environments. In this way, we disentangle the perception system and the learned control policy. Our extensive experiments show that the use of both vision and tactile inputs, together with proprioception, allows the agent to complete the task in up to 92% of cases, compared to 77% when only one of the signals is given. Our results can provide valuable insights for the future design of tactile sensors and for deformable objects manipulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源