论文标题

天王星系统的共同行为 +巨大影响起源:倾斜影响

Co-accretion + giant impact origin of the Uranus system: Tilting Impact

论文作者

Rufu, Raluca, Canup, Robin M.

论文摘要

Uranian卫星系统的起源仍然不确定。这四个主要卫星具有几乎圆形的共同计划轨道,并且卫星系统和行星质量的比例类似于木星的卫星系统,这表明乌拉尼亚系统在气体共易碎产生的磁盘中类似地形成。但是,天王星是具有高倾斜度的逆行旋转器。卫星在其高度倾斜的赤道平面上绕着行星的逆行旋转轨道,这种构型无法单独通过共同处理来解释。在这项工作中,我们研究了Morbidelli等人提出的共同行为 +巨型影响方案的第一阶段。 (2012)对于Uranian系统的起源。在此模型中,由共同精神形成的卫星系统因倾斜地球的巨大冲击而破坏了稳定。原始卫星碰撞并破坏,形成一个外部碎屑盘,可以重新定位地球的新赤道平面,并积聚到天王星的4个主要卫星中。所需的重新定位到与最外面的Oberon相当的距离之外,要求该冲击以$ \ ge 1 \%$的天王星质量形成内部磁盘。我们在这里模拟了巨大的影响,这些影响适当地倾斜了行星,并以与当前系统相当的角度使系统保持角度动量。我们发现,这种影响不会产生足够大的内部碎屑盘,无法将外部碎屑盘重新检查到影响后赤道平面。尽管我们的结果与共同行为 +巨型影响模型的明显要求不一致,但我们建议替代方案值得进一步探索。

The origin of the Uranian satellite system remains uncertain. The four major satellites have nearly circular, co-planar orbits and the ratio of the satellite system and planetary mass resembles Jupiter's satellite system, suggesting the Uranian system was similarly formed within a disk produced by gas co-accretion. However, Uranus is a retrograde rotator with a high obliquity. The satellites orbit in its highly tilted equatorial plane in the same sense as the planet's retrograde rotation, a configuration that cannot be explained by co-accretion alone. In this work we investigate the first stages of the co-accretion + giant impact scenario proposed by Morbidelli et al. (2012) for the origin of the Uranian system. In this model, a satellite system formed by co-accretion is destabilized by a giant impact that tilts the planet. The primordial satellites collide and disrupt, creating an outer debris disk that can re-orient to the planet's new equatorial plane and accrete into Uranus' 4 major satellites. The needed reorientation out to distances comparable to outermost Oberon requires that the impact creates an inner disk with $\ge 1\%$ of Uranus' mass. We here simulate giant impacts that appropriately tilt the planet and leave the system with an angular momentum comparable to that of the current system. We find that such impacts do not produce inner debris disks massive enough to realign the outer debris disk to the post-impact equatorial plane. Although our results are inconsistent with the apparent requirements of a co-accretion + giant impact model, we suggest alternatives that merit further exploration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源