论文标题
部分可观测时空混沌系统的无模型预测
Semi-Weakly Supervised Object Detection by Sampling Pseudo Ground-Truth Boxes
论文作者
论文摘要
半弱监督的学习最近在对象检测文献中引起了很大的关注,因为它们可以减轻成功培训深度学习模型所需的注释成本。半监督学习的最先进方法依赖于使用多阶段过程训练的学生教师模型以及大量数据增强。自定义网络已为弱监督的设置开发,因此很难适应不同的检测器。在本文中,引入了一种弱半监督的训练方法,以减少这些训练挑战,但通过仅利用一小部分完全标记的图像和信息弱标记的图像中的信息来实现最先进的性能。特别是,我们基于通用抽样的学习策略以在线方式产生伪基真实(GT)边界框注释,消除了对多阶段培训的需求和学生教师网络配置。这些伪GT框是根据通过得分传播过程累积的对象提案的分类得分从弱标记的图像中采样的。 PASCAL VOC数据集的经验结果表明,使用VOC 2007作为完全标记的拟议方法可提高性能5.0%,而VOC 2012作为弱标记数据。同样,有了5-10%的完全注释的图像,我们观察到MAP中的10%以上的改善,表明对图像级注释进行适度的投资可以大大改善检测性能。
Semi- and weakly-supervised learning have recently attracted considerable attention in the object detection literature since they can alleviate the cost of annotation needed to successfully train deep learning models. State-of-art approaches for semi-supervised learning rely on student-teacher models trained using a multi-stage process, and considerable data augmentation. Custom networks have been developed for the weakly-supervised setting, making it difficult to adapt to different detectors. In this paper, a weakly semi-supervised training method is introduced that reduces these training challenges, yet achieves state-of-the-art performance by leveraging only a small fraction of fully-labeled images with information in weakly-labeled images. In particular, our generic sampling-based learning strategy produces pseudo-ground-truth (GT) bounding box annotations in an online fashion, eliminating the need for multi-stage training, and student-teacher network configurations. These pseudo GT boxes are sampled from weakly-labeled images based on the categorical score of object proposals accumulated via a score propagation process. Empirical results on the Pascal VOC dataset, indicate that the proposed approach improves performance by 5.0% when using VOC 2007 as fully-labeled, and VOC 2012 as weak-labeled data. Also, with 5-10% fully annotated images, we observed an improvement of more than 10% in mAP, showing that a modest investment in image-level annotation, can substantially improve detection performance.