论文标题

部分可观测时空混沌系统的无模型预测

Multi-Rate Planning and Control of Uncertain Nonlinear Systems: Model Predictive Control and Control Lyapunov Functions

论文作者

Csomay-Shanklin, Noel, Taylor, Andrew J., Rosolia, Ugo, Ames, Aaron D.

论文摘要

现代控制系统必须在受安全限制和输入限制的越来越复杂的环境中运行,并且通常以分层方式实现,并且在多个时间尺度上运行的不同控制器。然而,非线性控制器合成的传统建设性方法通常会“弄平”这个层次结构,重点是单个时间尺度,从而限制了对整个系统的限制满意度进行严格保证的能力。在这项工作中,我们试图通过\ textIt {Multi-Rate}控制体系结构来解决约束非线性系统的稳定。这是通过使用线性化模型和模型预测控制(MPC)为非线性系统的迭代计划连续参考轨迹以及使用全阶非线性模型和控制Lyapunov函数(CLFS)跟踪所述轨迹的连续参考轨迹。通过使用\ textIt {Bézier曲线}来确保确保限制满意度的方式连接这两个级别的控制设计,这可以通过计划一系列离散点来尊重限制的持续轨迹。如仿真所示,我们的框架是通过凸优化问题进行编码的。

Modern control systems must operate in increasingly complex environments subject to safety constraints and input limits, and are often implemented in a hierarchical fashion with different controllers running at multiple time scales. Yet traditional constructive methods for nonlinear controller synthesis typically "flatten" this hierarchy, focusing on a single time scale, and thereby limited the ability to make rigorous guarantees on constraint satisfaction that hold for the entire system. In this work we seek to address the stabilization of constrained nonlinear systems through a \textit{multi-rate} control architecture. This is accomplished by iteratively planning continuous reference trajectories for a nonlinear system using a linearized model and Model Predictive Control (MPC), and tracking said trajectories using the full-order nonlinear model and Control Lyapunov Functions (CLFs). Connecting these two levels of control design in a way that ensures constraint satisfaction is achieved through the use of \textit{Bézier curves}, which enable planning continuous trajectories respecting constraints by planning a sequence of discrete points. Our framework is encoded via convex optimization problems which may be efficiently solved, as demonstrated in simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源