论文标题

融合有关群体群体神经网络学习代理的可解释知识

Fusing Interpretable Knowledge of Neural Network Learning Agents For Swarm-Guidance

论文作者

Nguyen, Duy Tung, Kasmarik, Kathryn, Abbass, Hussein

论文摘要

基于神经的学习者使用内部人工神经网络做出决策。在某些情况下,与人和机器都以友好的形式重新解释了这些知识是相关的。这些情况包括:当需要代理人在人机组合的情况下,在人机组合的环境中需要以透明的方式传达他们相互学习的知识时,在该环境中,人类和机器需要在任务上进行协作,或者需要验证代理商之间交流的知识。我们提出了一个可解释的知识融合框架,适用于基于神经的学习剂,并提出了弱国家区域(POWSA)再训练技术的优先级。我们首先在合成二进制分类任务上测试提出的框架,然后再在基于牧羊的多代理群指导任务上对其进行评估。结果表明,所提出的框架将群体指导环境的成功率提高了11%,并且稳定性更高,以换取可解释性的计算成本14.5%的适度增加。此外,该框架介绍了代理商在人类友好的代表性中学到的知识,从而可以更好地描述代理人知识的视觉表达。

Neural-based learning agents make decisions using internal artificial neural networks. In certain situations, it becomes pertinent that this knowledge is re-interpreted in a friendly form to both the human and the machine. These situations include: when agents are required to communicate the knowledge they learn to each other in a transparent way in the presence of an external human observer, in human-machine teaming settings where humans and machines need to collaborate on a task, or where there is a requirement to verify the knowledge exchanged between the agents. We propose an interpretable knowledge fusion framework suited for neural-based learning agents, and propose a Priority on Weak State Areas (PoWSA) retraining technique. We first test the proposed framework on a synthetic binary classification task before evaluating it on a shepherding-based multi-agent swarm guidance task. Results demonstrate that the proposed framework increases the success rate on the swarm-guidance environment by 11% and better stability in return for a modest increase in computational cost of 14.5% to achieve interpretability. Moreover, the framework presents the knowledge learnt by an agent in a human-friendly representation, leading to a better descriptive visual representation of an agent's knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源