论文标题
标量和矢量衡量位于保健环境空间形式主义中的统一
Scalar and vector gauges unification in de Sitter ambient space formalism
论文作者
论文摘要
我们将DE Sitter Ambient Space形式主义中的无质量耦合标量场视为衡量电位或连接场。我们通过帮助任意常数的五载体场$ b^α$类似于标准量规理论来构建标量规理论。标量和纺纱场之间的相互作用的拉格朗日密度在此框架中显示。可以通过适当选择恒定的五载体场的适当选择,从零曲率极限下的拉格朗日密度中提取Yukawa电位。结果表明,DE Sitter环境空间形式主义使我们能够统一标量和矢量规场。通过为常数五矢量场$ b^α$选择矩阵形式,可以重写在非交通几何形状的光谱作用中标量和矢量规场的统一。我们讨论,如果将标量规场视为背景度量场的共形扇区,则可以将其解释为从经典的角度来看,量子几何形状中不同的de Sitter倍曲面之间的连接场。
We consider the massless minimally coupled scalar field in the de Sitter ambient space formalism as a gauge potential or connection field. We construct the scalar gauge theory by helping an arbitrary constant five-vector field $B^α$ analogous to the standard gauge theory. The Lagrangian density of the interaction between the scalar and spinor fields is presented in this framework. The Yukawa potential can be extracted from this Lagrangian density at the null curvature limit by an appropriate choice of a constant five-vector field. It is shown that the de Sitter ambient space formalism permits us to unify the scalar and vector gauge fields. By choosing a matrix form for the constant five-vector field $B^α$, the unification of scalar and vector gauge fields in the spectral action of noncommutative geometry can be rewritten. We discuss that if the scalar gauge field is considered as a conformal sector of the background metric field, it may be interpreted as the connection field between the different de Sitter hyperboloids in the quantum geometry from the classical point of view.