论文标题
基于G-Matrix调制的可调孔旋转光子相互作用
Tunable hole spin-photon interaction based on g-matrix modulation
论文作者
论文摘要
我们考虑使用自旋电路的设备,其中超导微波谐振器电容耦合到限制在半导体量子点中的单个孔中。由于与价波段状态的固有固有固有的强旋轨耦合,孔的旋转磁磁性可以进行电气调节。该调制将谐振器中的光子耦合到孔自旋。我们表明,施加的栅极电压和磁场方向可以对自旋光子相互作用进行多功能控制,其特征可以从完全横向转向完全纵向。纵向耦合实际上是最大的,当一个横向消失,反之亦然。这种“相互甜度”是由G-Matrix的几何特性引起的,并保护自旋免受脱落或放松的影响。我们估计在现实设置中达到约10 MHz的耦合速率,并讨论利用横向或纵向自旋相互作用的潜在电路QED应用。此外,我们证明了G-Matrix曲率可用于实现与增强相干性的参数纵向耦合。
We consider a spin circuit-QED device where a superconducting microwave resonator is capacitively coupled to a single hole confined in a semiconductor quantum dot. Thanks to the strong spin-orbit coupling intrinsic to valence-band states, the gyromagnetic g-matrix of the hole can be modulated electrically. This modulation couples the photons in the resonator to the hole spin. We show that the applied gate voltages and the magnetic-field orientation enable a versatile control of the spin-photon interaction, whose character can be switched from fully transverse to fully longitudinal. The longitudinal coupling is actually maximal when the transverse one vanishes and vice-versa. This "reciprocal sweetness" results from geometrical properties of the g-matrix and protects the spin against dephasing or relaxation. We estimate coupling rates reaching ~ 10 MHz in realistic settings and discuss potential circuit-QED applications harnessing either the transverse or the longitudinal spin-photon interaction. Furthermore, we demonstrate that the g-matrix curvature can be used to achieve parametric longitudinal coupling with enhanced coherence.