论文标题
Mod-$ p $动机共同体的Hochschild同源性在代数关闭的领域
Hochschild homology of mod-$p$ motivic cohomology over algebraically closed fields
论文作者
论文摘要
我们在动机的代数几何设置中执行Hochschild同源性计算。动机Hochschild同源系数环包含扭转类,这些类别由Mod-$ $ p $ p $ sotivic steenrod代数以及在自然数字上产生有限的非空支持的功能。在贝蒂(Betti)的实现下,我们恢复了伯克斯特特(Bökstedt)对有限主要田地拓扑霍奇(Hochschild)同源性的计算。
We perform Hochschild homology calculations in the algebro-geometric setting of motives. The motivic Hochschild homology coefficient ring contains torsion classes which arise from the mod-$p$ motivic Steenrod algebra and from generating functions on the natural numbers with finite non-empty support. Under the Betti realization, we recover Bökstedt's calculation of the topological Hochschild homology of finite prime fields.