论文标题
关于不对称对于暹罗代表学习的重要性
On the Importance of Asymmetry for Siamese Representation Learning
论文作者
论文摘要
许多用于视觉表示学习的自我监督的框架基于某些形式的暹罗网络。此类网络在概念上是对称的,具有两个并行编码器,但由于设计了众多的机制来破坏对称性,但实际上实际上是不对称的。在这项工作中,我们通过明确区分网络中的两个编码器,对不对称性的重要性进行正式研究 - 一种产生源编码和其他目标。我们的关键见解是,与普遍有益于学习的源相比,目标的差异相对较低。我们的五个案例研究的结果涵盖了不同的面向方差的设计,这在经验上是合理的,并且与我们对基线的初步理论分析保持一致。此外,我们发现不对称设计的改进能很好地推广到更长的训练时间表,多个其他框架和较新的骨干。最后,几种不对称设计的综合效果在下游传递上实现了成像线性探测和竞争结果的最先进的精度。我们希望我们的探索能够激发更多的研究,以利用暹罗代表学习的不对称性。
Many recent self-supervised frameworks for visual representation learning are based on certain forms of Siamese networks. Such networks are conceptually symmetric with two parallel encoders, but often practically asymmetric as numerous mechanisms are devised to break the symmetry. In this work, we conduct a formal study on the importance of asymmetry by explicitly distinguishing the two encoders within the network -- one produces source encodings and the other targets. Our key insight is keeping a relatively lower variance in target than source generally benefits learning. This is empirically justified by our results from five case studies covering different variance-oriented designs, and is aligned with our preliminary theoretical analysis on the baseline. Moreover, we find the improvements from asymmetric designs generalize well to longer training schedules, multiple other frameworks and newer backbones. Finally, the combined effect of several asymmetric designs achieves a state-of-the-art accuracy on ImageNet linear probing and competitive results on downstream transfer. We hope our exploration will inspire more research in exploiting asymmetry for Siamese representation learning.