论文标题

研究无泊松到达繁忙周期分发研究的无限服务器队列系统中的微分方程

Study about a Differential Equation in an Infinite Servers Queue System with Poisson Arrivals Busy Cycle Distribution Study

论文作者

Ferreira, Manuel Alberto M.

论文摘要

在无泊松到达现实生活中的无限服务器队列中,繁忙的时期和繁忙的周期概率研究至关重要。但这是一项非常艰巨的任务。在本文中,我们表明,通过求解该队列瞬态概率单调研究作为时间函数所引起的riccati方程,我们获得了服务长度分布功能的集合,为此,繁忙周期和繁忙周期的长度都具有非常简单的分布,通常以指数分布和脱位为orient分布。

In the infinite servers queue with Poisson arrivals real life practical applications, the busy period and the busy cycle probabilistic study is of main importance. But it is a very difficult task. In this text, we show that by solving a Riccati equation induced by this queue transient probabilities monotony study as time functions, we obtain a collection of service length distribution functions, for which both the busy period and the busy cycle have lengths with quite simple distributions, generally given in terms of exponential distributions and the degenerate at the origin distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源