论文标题

在海森堡小组的Korányi球形最大功能上

On the Korányi Spherical maximal function on Heisenberg groups

论文作者

Srivastava, Rajula

论文摘要

我们证明了与海森伯格小组中KóranyiSphere扩张相关的本地最大运算符的$ l^p \ to l^q $估计值。这些估计值是尖锐的终点,并暗示着相应的全局最大运算符的稀疏支配界限。我们还证明,在Korányi球体上,球形手段的L^Q $估计值敏锐,可用于改善相关的最大运算符的稀疏支配界限。

We prove $L^p\to L^q$ estimates for the local maximal operator associated with dilates of the Kóranyi sphere in Heisenberg groups. These estimates are sharp up to endpoints and imply new bounds on sparse domination for the corresponding global maximal operator. We also prove sharp $L^p\to L^q$ estimates for spherical means over the Korányi sphere, which can be used to improve the sparse domination bounds for the associated lacunary maximal operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源