论文标题

不可销的熵效果对受支持的纳米颗粒的烧结

Non-neglectable entropy effect on sintering of supported nanoparticles

论文作者

Zhu, Beien, Chen, Shiyuan, Jiang, Ying, Zhang, Hui, Qi, Rui, Han, Yu, Liu, Zhi, Yang, Bing, Hiroaki, Matsumoto, Zeng, Chaobin, Yuan, Wentao, Yang, Hangsheng, Zhang, Ze, Hu, Jun, Wang, Yong, Gao, Yi

论文摘要

烧结是指通过热的粒​​子聚结,它被称为一种热现象,涉及自然科学的各个方面已有几个世纪了。在异质催化中尤其重要,因为通常会烧结会导致催化剂失活。在先前的研究中,焓贡献被认为在烧结中占主导地位,熵效应通常被认为是可忽视的。但是,在这项工作中,我们明确地证明了熵可以通过设计实验并改善理论框架来占主导地位的焓贡献,以占主导地位的烧结行为(NP)。使用原位CS校正的环境扫描传输电子显微镜和基于同步的环境压力X射线光电光谱镜检查,我们观察到在三个系统中冷却后在冷却后加热和烧结后,在加热和烧结的情况下支持NP的前所未有的熵驱动的现象(Pd-ceo2,pd-ceo2,ag-tio2,ag-tio2,ag-tio2,ag-tio2)。我们定量地表明,高度分散的Ad-Otoms的构型熵足够大,可以扭转其在升高温度下的烧结趋势。这项工作重塑了对纳米级烧结的基本理解,并为热力学稳定的纳米催化剂的各种De-Novo设计打开了大门。

Sintering refers to particle coalescence by heat, which has been known as a thermal phenomenon involving all aspects of natural science for centuries. It is particularly important in heterogeneous catalysis because normally sintering results in deactivation of the catalysts. In previous studies, the enthalpy contribution was considered to be dominant in sintering and the entropy effect is generally considered neglectable. However, we unambiguously demonstrate in this work that entropy could prevail over the enthalpy contribution to dominate the sintering behavior of supported nanoparticles (NPs) by designed experiments and improved theoretical framework. Using in situ Cs-corrected environmental scanning transmission electron microscopy and synchrotron-based ambient pressure X-ray photoelectron spectroscopy, we observe the unprecedent entropy-driven phenomenon that supported NPs reversibly redisperse upon heating and sinter upon cooling in three systems (Pd-CeO2, Cu-TiO2, Ag-TiO2). We quantitatively show that the configurational entropy of highly dispersed ad-atoms is large enough to reverse their sintering tendency at the elevated temperature. This work reshapes the basic understanding of sintering at the nanoscale and opens the door for various de-novo designs of thermodynamically stable nanocatalysts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源