论文标题
环网和Levi sublebras
Annular webs and Levi subalgebras
论文作者
论文摘要
对于任何形式的$ \ mathfrak {l} = \ mathfrak {gl} _ {l_ {l_ {1}} \ oplus \ dots \ oplus \ oplus \ mathfrak {gl} _ {l_量子$ \ mathfrak {gl} _ {n} $ web等同于量子$ \ mathfrak {l} $的有限维表示的类别。这可以解释为偏斜双重性的环形版本,并通过添加性iDempotent完成对$ \ mathfrak {l} $的表示类别进行描述,以及广义blob代数的网络版本。
For any Levi subalgebra of the form $\mathfrak{l}=\mathfrak{gl}_{l_{1}}\oplus\dots\oplus\mathfrak{gl}_{l_{d}}\subseteq\mathfrak{gl}_{n}$ we construct a quotient of the category of annular quantum $\mathfrak{gl}_{n}$ webs that is equivalent to the category of finite dimensional representations of quantum $\mathfrak{l}$ generated by exterior powers of the vector representation. This can be interpreted as an annular version of skew Howe duality, gives a description of the representation category of $\mathfrak{l}$ by additive idempotent completion, and a web version of the generalized blob algebra.