论文标题

直接可视化由2D perovskites中电子孔等离子体触发的超快晶格顺序

Direct visualization of ultrafast lattice ordering triggered by an electron-hole plasma in 2D perovskites

论文作者

Zhang, Hao, Li, Wenbin, Essman, Joseph, Quarti, Claudio, Metcalf, Isaac, Chiang, Wei-Yi, Sidhik, Siraj, Hou, Jin, Fehr, Austin, Attar, Andrew, Lin, Ming-Fu, Britz, Alexander, Shen, Xiaozhe, Link, Stephan, Wang, Xijie, Bergmann, Uwe, Kanatzidis, Mercouri G., Katan, Claudine, Even, Jacky, Blancon, Jean-Christophe, Mohite, Aditya D.

论文摘要

在光兴奋的半导体中,电荷载体和晶格自由度之间的超快耦合的直接可视化仍然是一个长期的挑战,对于理解极端非平衡条件下材料的光诱导的物理行为至关重要。在这里,通过监视波形矢量的超快衍射强度的演变,我们可以直接视觉单晶2D perovskites中的结构动力学。分析表明,由于热载体与钙钛矿晶格之间的强烈相互作用而产生的令人惊讶的光引起的超快晶格顺序,该晶格诱导了平面内的八面体旋转,向更对称的阶段。与超快电子衍射的相关超快速光谱在相同的载体密度上进行的相关超快光谱表明,通过调节晶体凝聚能,在短时间内创建了热和致密的电子孔等离子体触发晶格,从而在短时间内订购了晶格。最后,我们表明,可以通过选择适当的有机垫片层来调整2D钙钛矿的刚度来改变载气与晶格之间的相互作用。

Direct visualization of ultrafast coupling between charge carriers and lattice degrees of freedom in photo-excited semiconductors has remained a long-standing challenge and is critical for understanding the light-induced physical behavior of materials under extreme non-equilibrium conditions. Here, by monitoring the evolution of the wave-vector resolved ultrafast electron diffraction intensity following above-bandgap photo-excitation, we obtain a direct visual of the structural dynamics in monocrystalline 2D perovskites. Analysis reveals a surprising, light-induced ultrafast lattice ordering resulting from a strong interaction between hot-carriers and the perovskite lattice, which induces an in-plane octahedra rotation, towards a more symmetric phase. Correlated ultrafast spectroscopy performed at the same carrier density as ultrafast electron diffraction reveals that the creation of a hot and dense electron-hole plasma triggers lattice ordering at short timescales by modulating the crystal cohesive energy. Finally, we show that the interaction between the carrier gas and the lattice can be altered by tailoring the rigidity of the 2D perovskite by choosing the appropriate organic spacer layer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源