论文标题

共同教学无监督的域适应和扩展

Co-Teaching for Unsupervised Domain Adaptation and Expansion

论文作者

Tian, Kaibin, Wei, Qijie, Li, Xirong

论文摘要

无监督的域改编(UDA)本质上是在源域上交易模型的性能,以提高其在目标域上的性能。为了解决这个问题,最近提出了无监督的域扩展(UDE)。 UDE试图像UDA一样适应目标域的模型,同时保持其源域性能。在UDA和UDE设置中,假定为给定域量身定制的模型,它是源或目标域,可以很好地处理给定域中的样品。我们通过报告跨域视觉歧义的存在来质疑假设:鉴于两个域之间缺乏结晶的边界,一个域中的样品可以在视觉上接近另一个域。这样的样本通常在其主机领域中的少数群体中,因此它们倾向于被特定于域的模型忽略,但是可以通过其他域中的模型更好地处理。我们利用这一发现,并因此提出共同教学(CT)。 CT方法是通过基于知识蒸馏的CT(KDCT)加上混合CT(MICT)实例化的。具体而言,KDCT将知识从领先的老师网络和助理教师网络转移到学生网络,因此,学生将更好地处理跨域的歧义。同时,MICT进一步增强了学生的概括能力。在两个图像分类数据集和两个驾驶场所分割数据集上进行了广泛的实验证明了CT对UDA和UDE的可行性。

Unsupervised Domain Adaptation (UDA) essentially trades a model's performance on a source domain for improving its performance on a target domain. To resolve the issue, Unsupervised Domain Expansion (UDE) has been proposed recently. UDE tries to adapt the model for the target domain as UDA does, and in the meantime maintains its source-domain performance. In both UDA and UDE settings, a model tailored to a given domain, let it be the source or the target domain, is assumed to well handle samples from the given domain. We question the assumption by reporting the existence of cross-domain visual ambiguity: Given the lack of a crystally clear boundary between the two domains, samples from one domain can be visually close to the other domain. Such sorts of samples are typically in minority in their host domain, so they tend to be overlooked by the domain-specific model, but can be better handled by a model from the other domain. We exploit this finding, and accordingly propose Co-Teaching (CT). The CT method is instantiated with knowledge distillation based CT (kdCT) plus mixup based CT (miCT). Specifically, kdCT transfers knowledge from a leading-teacher network and an assistant-teacher network to a student network, so the cross-domain ambiguity will be better handled by the student. Meanwhile, miCT further enhances the generalization ability of the student. Extensive experiments on two image classification datasets and two driving-scene segmentation datasets justify the viability of CT for UDA and UDE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源