论文标题
异常射击几何学感知:一种基于阈值的新型估计器,具有最大化的级别方差
Outlier-Robust Geometric Perception: A Novel Thresholding-Based Estimator with Intra-Class Variance Maximization
论文作者
论文摘要
几何感知问题是机器人技术和计算机视觉的基本任务。在实际应用程序中,它们经常遇到不可避免的异常值问题,以防止传统算法进行正确的估计。在本文中,我们提出了一种新型的通用稳健估计量TIVM(具有类内方差最大化的阈值),该估计值可以与标准的非最低限度求解器合作,以有效拒绝几何感知问题的离群值。首先,我们介绍了阶级方差最大化的技术,以在测量残差上设计一种动态的2组阈值方法,旨在将与异常值明显的分离嵌入者分开。然后,我们开发了一个迭代框架,该框架通过使用多层动态阈值策略接近纯 - 内部组来鲁顿,从而强劲地优化了模型,在该策略中,作为子例程,其中进一步采用了用于层数调整的自适应机制,以最大程度地减少用户定义的参数。我们在3个经典的几何感知问题上验证了提出的估计器:旋转,点云注册和类别级别的感知,实验表明,它与70--90 \%的异常值相稳定,并且可以在3--15的迭代中收敛,并且通常在3---15的迭代中,比州立大学的稳健求解速度更快,例如,比较稳健的求解速度较快。此外,另一个亮点是:即使问题的内部噪声统计数据是完全未知的,我们的估计器也可以保持大致相同的鲁棒性。
Geometric perception problems are fundamental tasks in robotics and computer vision. In real-world applications, they often encounter the inevitable issue of outliers, preventing traditional algorithms from making correct estimates. In this paper, we present a novel general-purpose robust estimator TIVM (Thresholding with Intra-class Variance Maximization) that can collaborate with standard non-minimal solvers to efficiently reject outliers for geometric perception problems. First, we introduce the technique of intra-class variance maximization to design a dynamic 2-group thresholding method on the measurement residuals, aiming to distinctively separate inliers from outliers. Then, we develop an iterative framework that robustly optimizes the model by approaching the pure-inlier group using a multi-layered dynamic thresholding strategy as subroutine, in which a self-adaptive mechanism for layer-number tuning is further employed to minimize the user-defined parameters. We validate the proposed estimator on 3 classic geometric perception problems: rotation averaging, point cloud registration and category-level perception, and experiments show that it is robust against 70--90\% of outliers and can converge typically in only 3--15 iterations, much faster than state-of-the-art robust solvers such as RANSAC, GNC and ADAPT. Furthermore, another highlight is that: our estimator can retain approximately the same level of robustness even when the inlier-noise statistics of the problem are fully unknown.