论文标题
关于腔中热化学速率的抑制和增强
On the Suppression and Enhancement of Thermal Chemical Rates in a Cavity
论文作者
论文摘要
在理论上,观察到的Fabry-Perot腔中热化学速率的修饰仍然是一种鲜为人知的效果。最近的突破通过Grote-Hynes理论解释了一些观察结果,其中腔与反应坐标引入摩擦,从而降低了传输系数和速率。增强速率的状态,在不同的空腔频率下观察到的尖锐共振以及在集体制度中这些效应的存活率仍然无法解释。在本文中,我们考虑\ emph {cis} - \ emph {trans}使用\ emph {ab-initio}势能表面的hono原子化异构化。我们使用反应通量方法评估传输系数,并确定速率加速度的条件。在反应坐标的不足,低摩擦状态下,腔耦合可以随着耦合强度的增加提高速率,直到达到KRAMERS离职点。该制度中的尖锐共鸣与支持腔的能量重新分布通道有关。
The observed modification of thermal chemical rates in Fabry-Perot cavities remains a poorly understood effect theoretically. Recent breakthroughs explain some of the observations through the Grote-Hynes theory, where the cavity introduces friction with the reaction coordinate, thus reducing the transmission coefficient and the rate. The regime of rate enhancement, the observed sharp resonances at varying cavity frequencies, and the survival of these effects in the collective regime remain mostly unexplained. In this paper, we consider the \emph{cis}-\emph{trans} isomerization of HONO atomistically using an \emph{ab-initio} potential energy surface. We evaluate the transmission coefficient using the reactive flux method and identify the conditions for rate acceleration. In the underdamped, low-friction regime of the reaction coordinate, the cavity coupling enhances the rate with increasing coupling strength until reaching the Kramers turnover point. Sharp resonances in this regime are related to cavity-enabled energy redistribution channels.