论文标题
捐助者,受体和一些芳香学:HBN和MOS $ _2 $单层上的分子吸附物的电子相互作用
Donors, Acceptors, and a Bit of Aromatics: Electronic Interactions of Molecular Adsorbates on hBN and MoS$_2$ Monolayers
论文作者
论文摘要
对于下一代光电应用应用,低维有机无机界面的设计需要深入了解这些系统中统治电子相互作用的微观机制。在这项工作中,我们提出了一项基于密度功能理论的第一原理研究,该研究检查了五个分子供体和受体的结构,能量和电子特性,并吸附在自由融合的六边形硝酸硼(HBN)和二硫化物(MOS $ _2 $)单层中。由于分散相互作用的关键贡献,所有被认为的异质结构都是稳定的,这是通过在两个底物上的物理学分子的总体平坦排列最大化的。混合系统的水平比对取决于成分的特征。在HBN上,I型和II型异质结构都可能形成,具体取决于对真空水平的边界轨道的相对能量。另一方面,所有基于$ _2 $的混合动力系统都表现出II级对齐,分子边界轨道位于半导体的能量隙上。杂化材料的电子结构由界面偶极矩的形成以及有机和无机成分之间的波功能杂交进一步确定。这些结果为设计具有适当特征的新型低维混合材料设计提供了重要的指示。
The design of low-dimensional organic-inorganic interfaces for the next generation of opto-electronic applications requires an in-depth understanding of the microscopic mechanisms ruling electronic interactions in these systems. In this work, we present a first-principles study based on density-functional theory inspecting the structural, energetic, and electronic properties of five molecular donors and acceptors adsorbed on freestanding hexagonal boron nitride (hBN) and molybdenum disulfide (MoS$_2$) monolayers. All considered heterostructures are stable, due to the crucial contribution of dispersion interactions, which are maximized by the overall flat arrangement of the physisorbed molecules on both substrates. The level alignment of the hybrid systems depends on the characteristics of the constituents. On hBN, both type-I and type-II heterostructures may form, depending on the relative energies of the frontier orbitals with respect to the vacuum level. On the other hand, all MoS$_2$-based hybrid systems exhibit a type-II level alignment, with the molecular frontier orbitals positioned across the energy gap of the semiconductor. The electronic structure of the hybrid materials is further determined by the formation of interfacial dipole moments and by the wave-function hybridization between the organic and inorganic constituents. These results provide important indications for the design of novel low-dimensional hybrid materials with suitable characteristics for opto-electronics.