论文标题
Schwarz的章节的几何版本,用于球形凸功能
Geometric Versions of Schwarz's Lemma for Spherically Convex Functions
论文作者
论文摘要
我们证明了在涉及几何量的单位磁盘上定义的球形凸功能的几种急剧失真和单调性定理,例如球形长度,球形区域和总球形曲率。这些结果可以看作是用于球形凸功能的经典Schwarz引理的几何变体。
We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lemma for spherically convex functions.