论文标题
沸腾的量子真空:地面纠缠的热子系统
Boiling Quantum Vacuum: Thermal Subsystems from Ground-State Entanglement
论文作者
论文摘要
在某些特殊情况下,例如在黑洞附近或在统一加速的框架中,真空波动似乎会带来有限的温度环境。当前没有实验确认的这种效果可以解释为在未观察到的区域中追踪真空模式后,可以将其解释为量子纠缠的表现。在这项工作中,我们确定了一类实验可访问的量子系统,其中热密度矩阵从真空纠缠中出现。我们表明,嵌入在$ d $ d $维的Dirac Fermion真空中的低维子系统的密度矩阵(在晶格上或连续体上)都具有相对于低维迪拉克汉密尔顿的热形式。令人惊讶的是,我们表明真空纠缠甚至可以共同使在零温度下的散布系统的子系统显示为热无间隙系统。我们提出在冷原子量子模拟器中进行混凝土实验,以观察真空纠缠诱导的热状态。
In certain special circumstances, such as in the vicinity of a black hole or in a uniformly accelerating frame, vacuum fluctuations appear to give rise to a finite-temperature environment. This effect, currently without experimental confirmation, can be interpreted as a manifestation of quantum entanglement after tracing out vacuum modes in an unobserved region. In this work, we identify a class of experimentally accessible quantum systems where thermal density matrices emerge from vacuum entanglement. We show that reduced density matrices of lower-dimensional subsystems embedded in $D$-dimensional gapped Dirac fermion vacuum, either on a lattice or continuum, have a thermal form with respect to a lower-dimensional Dirac Hamiltonian. Strikingly, we show that vacuum entanglement can even conspire to make a subsystem of a gapped system at zero temperature appear as a hot gapless system. We propose concrete experiments in cold atom quantum simulators to observe the vacuum entanglement induced thermal states.