论文标题
测试使用SPARC的多塑料ULDM模型
Testing multiflavored ULDM models with SPARC
论文作者
论文摘要
我们使用Spitzer光度法和准确的旋转曲线(SPARC)数据库对单个和双重风味超轻暗物质(ULDM)模型进行最大似然估计(MLE)。这些估计值与几种常用的冷暗物质(CDM)模型的MLE进行了比较。通过比较各种CDM模型,我们发现与以前的研究一致,Burkert和Einasto模型往往比其他常用的CDM模型更好。我们专注于Einasto和ULDM模型之间的比较,并分析了ULDM粒子质量的案例:免费变化;并修复。对于这些分析中的每一个,假设孤子和光环曲线都是:总结在一起;并以给定半径匹配。当我们让粒子质量变化时,我们发现对任何特定的粒子质量范围的偏好可忽略不计,在$ 10^{ - 25} \,\ text {ev} \ leq m \ leq m \ leq11^{ - 19} \,\ texch \,\ text {ev {ev {ev} $时,假设汇总模型时。但是,对于匹配的模型,我们发现几乎所有的星系都偏爱$ 10^{ - 23} \,\ text {ev} \ seltsim m \ sillsim10^{ - 20} \,\ text {ev ev {ev} $。对于这两种双重风味模型,我们都会发现大多数星系都偏爱大约相等的颗粒质量。我们发现,相对于匹配的模型,求和模型相对于孤子 - 哈洛(SH)关系的差异要大得多。当固定粒子质量时,匹配的模型会在大多数扫描的质量中都会产生中位数和平均孤子和光环值,这些模型属于SH关系边界内。当粒子固定在拟合过程中时,我们发现粒子质量$ m = 10^{ - 20.5} \,\ text {ev} $(用于单个风味模型)和$ m_1 = 10^{ - 20.5} \,\ 20.5} \,\ text {ev {ev} $,$ m_2 = 10.2.2.2 = 10.2.2匹配的模型。我们讨论如何使用增强学习算法进一步进一步进行研究。
We perform maximum likelihood estimates (MLEs) for single and double flavor ultralight dark matter (ULDM) models using the Spitzer Photometry and Accurate Rotation Curves (SPARC) database. These estimates are compared to MLEs for several commonly used cold dark matter (CDM) models. By comparing various CDM models we find, in agreement with previous studies, that the Burkert and Einasto models tend to perform better than other commonly used CDM models. We focus on comparisons between the Einasto and ULDM models and analyze cases for which the ULDM particle masses are: free to vary; and fixed. For each of these analyses, we perform fits assuming the soliton and halo profiles are: summed together; and matched at a given radius. When we let the particle masses vary, we find a negligible preference for any particular range of particle masses, within $10^{-25}\,\text{eV}\leq m\leq10^{-19}\,\text{eV}$, when assuming the summed models. For the matched models, however, we find that almost all galaxies prefer particles masses in the range $10^{-23}\,\text{eV}\lesssim m\lesssim10^{-20}\,\text{eV}$. For both double flavor models we find that most galaxies prefer approximately equal particle masses. We find that the summed models give much larger variances with respect to the soliton-halo (SH) relation than the matched models. When the particle masses are fixed, the matched models give median and mean soliton and halo values that fall within the SH relation bounds, for most masses scanned. When the particle masses are fixed in the fitting procedure, we find the best fit results for the particle mass $m=10^{-20.5}\,\text{eV}$ (for the single flavor models) and $m_1=10^{-20.5}\,\text{eV}$, $m_2=10^{-20.2}\,\text{eV}$ for the double flavor, matched model. We discuss how our study will be furthered using a reinforcement learning algorithm.