论文标题

关于受限本征函数的广义傅里叶系数的增长

On the growth of generalized Fourier coefficients of restricted eigenfunctions

论文作者

Brown, Madelyne M.

论文摘要

令$(m,g)$为平滑,紧凑,riemannian歧管,$ \ {ϕ_h \} $ $ l^2 $ normalialized laplace eigenfunctions的序列$ m $。对于平滑的子曼福尔德$ h \子集M $,我们考虑通过在$ h $ wavefront Set上避免$ s^*h $的函数$ \ {ψ_h\} $测试限制的特征functions $ ϕ_H | _h $的增长。也就是说,我们研究所谓的广义傅里叶系数:$ \ langle ϕ_h,ψ_h\ rangle_ {l^2(h)} $。我们对这些系数进行明确绑定,这取决于两个功能的缺陷度量$ ϕ_h $和$ψ_H$相关的措施。这使我们可以在$ψ_H$的波前集合集合的复发方向集合时,可以得到一些$ -O $的改进。为了获得我们的估计值,我们利用了测量光束技术。

Let $(M,g)$ be a smooth, compact, Riemannian manifold and $\{ϕ_h\}$ a sequence of $L^2$-normalized Laplace eigenfunctions on $M$. For a smooth submanifold $H\subset M$, we consider the growth of the restricted eigenfunctions $ϕ_h|_H$ by testing them against a sequence of functions $\{ψ_h\}$ on $H$ whose wavefront set avoids $S^*H$. That is, we study what we call the generalized Fourier coefficients: $\langle ϕ_h,ψ_h\rangle_{L^2(H)}$. We give an explicit bound on these coefficients depending on how the defect measures for the two collections of functions $ϕ_h$ and $ψ_h$ relate. This allows us to get a little$-o$ improvement whenever the collection of recurrent directions over the wavefront set of $ψ_h$ is small. To obtain our estimates, we utilize geodesic beam techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源