论文标题

反馈弧集中的极端结果

Extremal results on feedback arc sets in digraphs

论文作者

Fox, Jacob, Himwich, Zoe, Mani, Nitya

论文摘要

如果可以通过定向简单,无向图的边缘来获得有向图。对于定向的图$ g $,令$β(g)$表示最小反馈弧集的大小,这是最小的边缘子集,其删除留下了一个无环子图。 Berger和Shor结果的一个简单结果是,任何带有$ M $ edges的面向图形$ g $都满足$β(g)= m/2 -ω(m^{3/4})$。 我们观察到,如果一个定向的图$ G $具有固定的禁止子图$ b $,则最大可能是$β(g)= m/2 -ω(m^{3/4})$的上限,如果$ b $不是bipartite,则最好作为边缘数量的函数,但如果下级$ 3/4 $可以改善$ 3/4 $,则可以改善$ 3/4 $。我们还表明,对于每个有理数的$ r $,$ 3/4 $和$ 1 $之间,都有有限的Digraphs $ \ Mathcal {B} $的收藏,使每个$ \ Mathcal {B} $ - 免费的Digraph $ G $带有$ M $ EDGES $ M $ EDGES $β(g)= m/2------------(m^r)$ bunst and bount and bount and bount and bount and bount and bount and bount and bount and bount and bount and bount and bount。证明使用了与Turán数字的连接,以及Bukh和Conlon的结果。我们的两个上限都配备了随机线性时间算法,这些算法构建反馈弧设置可实现这些边界。最后,我们通过最小反馈弧集对quasirandom有向图的表征进行表征。

A directed graph is oriented if it can be obtained by orienting the edges of a simple, undirected graph. For an oriented graph $G$, let $β(G)$ denote the size of a minimum feedback arc set, a smallest subset of edges whose deletion leaves an acyclic subgraph. A simple consequence of a result of Berger and Shor is that any oriented graph $G$ with $m$ edges satisfies $β(G) = m/2 - Ω(m^{3/4})$. We observe that if an oriented graph $G$ has a fixed forbidden subgraph $B$, the upper bound of $β(G) = m/2 - Ω(m^{3/4})$ is best possible as a function of the number of edges if $B$ is not bipartite, but the exponent $3/4$ in the lower order term can be improved if $B$ is bipartite. We also show that for every rational number $r$ between $3/4$ and $1$, there is a finite collection of digraphs $\mathcal{B}$ such that every $\mathcal{B}$-free digraph $G$ with $m$ edges satisfies $β(G) = m/2 - Ω(m^r)$, and this bound is best possible up to the implied constant factor. The proof uses a connection to Turán numbers and a result of Bukh and Conlon. Both of our upper bounds come equipped with randomized linear-time algorithms that construct feedback arc sets achieving those bounds. Finally, we give a characterization of quasirandom directed graphs via minimum feedback arc sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源