论文标题

迈向多光谱卫星图像的板载式分割

Towards On-Board Panoptic Segmentation of Multispectral Satellite Images

论文作者

Fernando, Tharindu, Fookes, Clinton, Gammulle, Harshala, Denman, Simon, Sridharan, Sridha

论文摘要

随着低功率嵌入式计算设备和遥感仪器的巨大进步,传统的卫星图像处理管道包括在处理地面上处理数据之前的昂贵数据传输步骤,这是通过捕获数据的板上处理来代替的。这种范式的转移使卫星本身及时获得关键和时间敏感的分析智能。但是,目前,多光谱卫星图像的板载处理仅限于分类和分割任务。将此处理扩展到下一个逻辑级别,在本文中,我们提出了一条轻巧的管道,用于对多光谱卫星图像的板载式分割。 Panoptic分割提供了主要的经济和环境见解,从农业用地到复杂军事应用的情报量的收益估算等等。然而,由于时间观察的丧失以及需要从单个图像样本中产生预测,因此板载智能提取引起了一些挑战。为了应对这一挑战,我们根据基于跨模式的融合策略提出了一个多模式的教师网络,以通过从多种模式利用数据来提高分割精度。我们还提出了一个在线知识蒸馏框架,以将这个多模式教师网络所学的知识转移到一个仅接收一个框架输入的大学学生,并且更适合于机上环境。我们使用Pastis多光谱的全景分割数据集对现有的最新全面分割模型进行基准测试,以考虑使用板载处理设置。与现有的最新模型相比,我们的评估表明,准确度指标的大幅增加。

With tremendous advancements in low-power embedded computing devices and remote sensing instruments, the traditional satellite image processing pipeline which includes an expensive data transfer step prior to processing data on the ground is being replaced by on-board processing of captured data. This paradigm shift enables critical and time-sensitive analytic intelligence to be acquired in a timely manner on-board the satellite itself. However, at present, the on-board processing of multi-spectral satellite images is limited to classification and segmentation tasks. Extending this processing to its next logical level, in this paper we propose a lightweight pipeline for on-board panoptic segmentation of multi-spectral satellite images. Panoptic segmentation offers major economic and environmental insights, ranging from yield estimation from agricultural lands to intelligence for complex military applications. Nevertheless, the on-board intelligence extraction raises several challenges due to the loss of temporal observations and the need to generate predictions from a single image sample. To address this challenge, we propose a multimodal teacher network based on a cross-modality attention-based fusion strategy to improve the segmentation accuracy by exploiting data from multiple modes. We also propose an online knowledge distillation framework to transfer the knowledge learned by this multi-modal teacher network to a uni-modal student which receives only a single frame input, and is more appropriate for an on-board environment. We benchmark our approach against existing state-of-the-art panoptic segmentation models using the PASTIS multi-spectral panoptic segmentation dataset considering an on-board processing setting. Our evaluations demonstrate a substantial increase in accuracy metrics compared to the existing state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源