论文标题
通过现成的大语言模型进行意图分类的数据增强
Data Augmentation for Intent Classification with Off-the-shelf Large Language Models
论文作者
论文摘要
数据增强是一种缓解数据稀缺问题的广泛使用的技术。在这项工作中,我们提出了一种基于促进的方法,以通过现成的语言模型(LMS)(例如GPT-3)生成标记的培训数据,以进行意图分类。这种方法的一个优点是,不需要针对数据生成的特定任务的LM-核算。因此,该方法不需要高参数调整,即使可用的培训数据很少,也适用。我们在四个不同的意图分类任务上以几次设置评估了所提出的方法。我们发现,当考虑到彼此的意图完全不同时,GPT生成的数据可显着提高意图分类器的性能。在具有语义接触意图的任务中,我们观察到生成的数据的帮助不大。我们的分析表明,这是因为GPT通常会产生与密切相关的意图而不是所需的话语。我们提供了初步证据,表明基于促进的GPT分类器可能有助于过滤生成的数据以提高其质量。
Data augmentation is a widely employed technique to alleviate the problem of data scarcity. In this work, we propose a prompting-based approach to generate labelled training data for intent classification with off-the-shelf language models (LMs) such as GPT-3. An advantage of this method is that no task-specific LM-fine-tuning for data generation is required; hence the method requires no hyper-parameter tuning and is applicable even when the available training data is very scarce. We evaluate the proposed method in a few-shot setting on four diverse intent classification tasks. We find that GPT-generated data significantly boosts the performance of intent classifiers when intents in consideration are sufficiently distinct from each other. In tasks with semantically close intents, we observe that the generated data is less helpful. Our analysis shows that this is because GPT often generates utterances that belong to a closely-related intent instead of the desired one. We present preliminary evidence that a prompting-based GPT classifier could be helpful in filtering the generated data to enhance its quality.