论文标题

基于会话建议的微行为编码

Micro-Behavior Encoding for Session-based Recommendation

论文作者

Yuan, Jiahao, Ji, Wendi, Zhang, Dell, Pan, Jinwei, Wang, Xiaoling

论文摘要

基于会话的建议(SR)旨在根据先前记录的用户互动会话来预测下一个项目,以供推荐。现有的SR现有方法专注于建模项目的过渡模式。在这样的模型中,所谓的微型行为描述了用户如何找到一个项目并在其上执行各种活动(例如,单击,添加到卡特和阅读委员会)被简单地忽略。最近的一些研究试图将微行为的顺序模式纳入SR模型。但是,这些顺序模型仍然无法有效地捕获微行为操作之间的所有固有相互依赖性。在这项工作中,我们旨在系统地研究微行为信息在SR中的影响。具体而言,我们确定了微型行为的两种不同模式:“顺序模式”和“二元关系模式”。为了构建用户微型行为的统一模型,我们首先设计了一个多编码,以通过图神经网络从不同项目中汇总顺序模式,然后利用扩展的自我注意力网络来利用微型行为的配对关系模式。在三个公共现实世界数据集上进行的广泛实验表明,所提出的方法优于最先进的基线,并确认了这两种不同的微行为模式对SR的有用性。

Session-based Recommendation (SR) aims to predict the next item for recommendation based on previously recorded sessions of user interaction. The majority of existing approaches to SR focus on modeling the transition patterns of items. In such models, the so-called micro-behaviors describing how the user locates an item and carries out various activities on it (e.g., click, add-to-cart, and read-comments), are simply ignored. A few recent studies have tried to incorporate the sequential patterns of micro-behaviors into SR models. However, those sequential models still cannot effectively capture all the inherent interdependencies between micro-behavior operations. In this work, we aim to investigate the effects of the micro-behavior information in SR systematically. Specifically, we identify two different patterns of micro-behaviors: "sequential patterns" and "dyadic relational patterns". To build a unified model of user micro-behaviors, we first devise a multigraph to aggregate the sequential patterns from different items via a graph neural network, and then utilize an extended self-attention network to exploit the pair-wise relational patterns of micro-behaviors. Extensive experiments on three public real-world datasets show the superiority of the proposed approach over the state-of-theart baselines and confirm the usefulness of these two different micro-behavior patterns for SR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源