论文标题
基于参数过滤的事件触发的学习
Parameter Filter-based Event-triggered Learning
论文作者
论文摘要
基于模型的算法深深植根于现代控制和系统理论。但是,它们通常具有关键的假设 - 访问系统的精确模型。实际上,模型远非完美。即使是未知参数的精确调整估计值,随着时间的流逝,也会恶化。因此,必须检测变化,以避免控制系统的次优甚至危险行为。我们建议将统计测试与专用参数过滤器相结合,该滤波器从状态数据跟踪未知系统参数。这些过滤器产生未知参数的估计值,进一步是不确定性的固有概念。当点估计离开置信区域时,我们会触发主动学习实验。我们仅在执行过滤器中足够小的不确定性后才更新模型。因此,仅在必要时更新模型,并且在确保确保改进的同时具有统计学意义,我们将其称为事件触发的学习。我们在直流电动机的数值模拟中验证了所提出的方法与模型预测控制。
Model-based algorithms are deeply rooted in modern control and systems theory. However, they usually come with a critical assumption - access to an accurate model of the system. In practice, models are far from perfect. Even precisely tuned estimates of unknown parameters will deteriorate over time. Therefore, it is essential to detect the change to avoid suboptimal or even dangerous behavior of a control system. We propose to combine statistical tests with dedicated parameter filters that track unknown system parameters from state data. These filters yield point estimates of the unknown parameters and, further, an inherent notion of uncertainty. When the point estimate leaves the confidence region, we trigger active learning experiments. We update models only after enforcing a sufficiently small uncertainty in the filter. Thus, models are only updated when necessary and statistically significant while ensuring guaranteed improvement, which we call event-triggered learning. We validate the proposed method in numerical simulations of a DC motor in combination with model predictive control.