论文标题
用于医学自然语言理解的层次语义构图框架的设计注意事项
Design considerations for a hierarchical semantic compositional framework for medical natural language understanding
论文作者
论文摘要
医学自然语言处理(NLP)系统是将大数据从临床报告存储库转换为用于支持疾病模型和验证干预方法的信息的关键促进技术。但是,当面对逻辑解释临床文本的任务时,当前的医疗NLP系统非常短。在本文中,我们描述了一个受人类认知机制启发的框架,试图跳跃NLP性能曲线。该设计集中于层次的语义组成模型(HSCM),该模型提供了用于指导解释过程的内部基材。本文描述了四个关键认知方面的见解,包括语义记忆,语义组成,语义激活和分层预测编码。我们讨论了生成语义模型的设计以及用于将自由文本句子转换为其含义的逻辑表示的相关语义解析器。本文讨论了作为长期基础框架的架构的关键特征的支持和拮抗论点。
Medical natural language processing (NLP) systems are a key enabling technology for transforming Big Data from clinical report repositories to information used to support disease models and validate intervention methods. However, current medical NLP systems fall considerably short when faced with the task of logically interpreting clinical text. In this paper, we describe a framework inspired by mechanisms of human cognition in an attempt to jump the NLP performance curve. The design centers about a hierarchical semantic compositional model (HSCM) which provides an internal substrate for guiding the interpretation process. The paper describes insights from four key cognitive aspects including semantic memory, semantic composition, semantic activation, and hierarchical predictive coding. We discuss the design of a generative semantic model and an associated semantic parser used to transform a free-text sentence into a logical representation of its meaning. The paper discusses supportive and antagonistic arguments for the key features of the architecture as a long-term foundational framework.