论文标题

分层分层变分压缩

Split Hierarchical Variational Compression

论文作者

Ryder, Tom, Zhang, Chen, Kang, Ning, Zhang, Shifeng

论文摘要

变分自动编码器(VAE)在执行图像数据集的压缩方面取得了巨大的成功。 BITS-BACK编码框架使这一成功成为可能,它在许多基准测试中产生了竞争性压缩性能。但是,尽管如此,VAE架构目前仍受编码实用性和压缩比的结合而限制。也就是说,不仅最新的方法(例如标准化流量)通常表现出表现出色的表现,而且编码中所需的初始位使单一和平行的图像压缩具有挑战性。为了解决这个问题,我们介绍了分裂分层变分压缩(SHVC)。 SHVC介绍了两个新颖性。首先,我们提出了一个有效的自回归先验,即自回归子像素卷积,该卷积可以在每像素自动加工和完全分解的概率模型之间进行概括。其次,我们定义了我们的编码框架,自回归的初始位,该框架灵活地支持并行编码,并避免了(首次避免)许多与BITS-BACK编码相关的实用性。在我们的实验中,我们证明SHVC能够在全分辨率无损图像压缩任务上实现最新的压缩性能,而与竞争性VAE方法相比,模型参数少100倍。

Variational autoencoders (VAEs) have witnessed great success in performing the compression of image datasets. This success, made possible by the bits-back coding framework, has produced competitive compression performance across many benchmarks. However, despite this, VAE architectures are currently limited by a combination of coding practicalities and compression ratios. That is, not only do state-of-the-art methods, such as normalizing flows, often demonstrate out-performance, but the initial bits required in coding makes single and parallel image compression challenging. To remedy this, we introduce Split Hierarchical Variational Compression (SHVC). SHVC introduces two novelties. Firstly, we propose an efficient autoregressive prior, the autoregressive sub-pixel convolution, that allows a generalisation between per-pixel autoregressions and fully factorised probability models. Secondly, we define our coding framework, the autoregressive initial bits, that flexibly supports parallel coding and avoids -- for the first time -- many of the practicalities commonly associated with bits-back coding. In our experiments, we demonstrate SHVC is able to achieve state-of-the-art compression performance across full-resolution lossless image compression tasks, with up to 100x fewer model parameters than competing VAE approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源