论文标题
$ \ tan^2(rπ)$的非理性性的直接证明
A direct proof of the irrationality of $\tan^2(r π)$
论文作者
论文摘要
鉴于有理数的$ r $使得$ 2R $不是整数,我们证明$ \ tan^2(rπ)$是不合理的,除非它等于$ 0 $,$ 1 $,$ 3 $或$ \ frac {1} {1} {3} {3} $,仅使用基本的三角晶和理性的根源theorem。此外,我们推断出$ \ tan(rπ)$,$ \ cos^2(rπ)$ ans $ \ cos(rπ)$是不合理的数字,除了通常的情况下。
Given a rational number $r$ such that $2r$ is not an integer, we prove that $\tan^2(rπ)$ is irrational unless it is equal to $0$, $1$, $3$ or $\frac{1}{3}$, using only basic trigonometry and the Rational Root Theorem. Moreover, we deduce that $\tan(rπ)$, $\cos^2(rπ)$ ans $\cos(rπ)$ are irrational numbers except in usual cases.