论文标题

Blasius边界层问题的准确基准结果使用跳过的Taylors系列,该系列收敛于所有实际值

Accurate benchmark results of Blasius boundary layer problem using a leaping Taylors series that converges for all real values

论文作者

S, Anil Lal, Milin, Martin

论文摘要

Blasius边界层解决方案是函数\(f(η)\)的Maclaurin序列膨胀,它在评估\(η\)较高值的较高值时具有收敛问题,这是由于存在于\(η\ of-5.69 \)的。在本文中,我们使用泰勒的串联膨胀逐渐移动的膨胀中心(跳跃中心)引入了\(f(η)\)的精确解决方案。每个系列都被求解为IVP,其三个初始值从上一个系列的解决方案计算出来,因此从第一个系列的收敛盘中选择了两个连续扩展中心之间的间隙。最后一个系列的形成使得它对于在无穷大处实现边界条件所需的合理高\(η\)值是收敛的。本方法使用牛顿 - 拉夫森方法来计算未知初始条件的值。 \(f''(0)\)以迭代方式。本文报道了基准的平板边界层不同参数的准确结果。

Blasius boundary layer solution is a Maclaurin series expansion of the function \(f(η)\), which has convergence problems when evaluating for higher values of \(η\) due to a singularity present at \(η\approx-5.69\). In this paper we are introducing an accurate solution to \(f(η)\) using Taylor's series expansions with progressively shifted centers of expansion(Leaping centers). Each series is solved as an IVP with the three initial values computed from solution of the previous series, so the gap between the centers of two consecutive expansions is selected from within the convergence disc of the first series. The last series is formed such that it is convergent for a reasonable high \(η\) value needed for implementing the boundary condition at infinity. The present methodology uses Newton-Raphson method to compute the value of the unknown initial condition viz. \(f''(0)\) in an iterative manner. Benchmark accurate results of different parameters of flat plate boundary layer with no slip and slip boundary conditions have been reported in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源