论文标题

棕榈:用途径进行缩放语言建模

PaLM: Scaling Language Modeling with Pathways

论文作者

Chowdhery, Aakanksha, Narang, Sharan, Devlin, Jacob, Bosma, Maarten, Mishra, Gaurav, Roberts, Adam, Barham, Paul, Chung, Hyung Won, Sutton, Charles, Gehrmann, Sebastian, Schuh, Parker, Shi, Kensen, Tsvyashchenko, Sasha, Maynez, Joshua, Rao, Abhishek, Barnes, Parker, Tay, Yi, Shazeer, Noam, Prabhakaran, Vinodkumar, Reif, Emily, Du, Nan, Hutchinson, Ben, Pope, Reiner, Bradbury, James, Austin, Jacob, Isard, Michael, Gur-Ari, Guy, Yin, Pengcheng, Duke, Toju, Levskaya, Anselm, Ghemawat, Sanjay, Dev, Sunipa, Michalewski, Henryk, Garcia, Xavier, Misra, Vedant, Robinson, Kevin, Fedus, Liam, Zhou, Denny, Ippolito, Daphne, Luan, David, Lim, Hyeontaek, Zoph, Barret, Spiridonov, Alexander, Sepassi, Ryan, Dohan, David, Agrawal, Shivani, Omernick, Mark, Dai, Andrew M., Pillai, Thanumalayan Sankaranarayana, Pellat, Marie, Lewkowycz, Aitor, Moreira, Erica, Child, Rewon, Polozov, Oleksandr, Lee, Katherine, Zhou, Zongwei, Wang, Xuezhi, Saeta, Brennan, Diaz, Mark, Firat, Orhan, Catasta, Michele, Wei, Jason, Meier-Hellstern, Kathy, Eck, Douglas, Dean, Jeff, Petrov, Slav, Fiedel, Noah

论文摘要

大型语言模型已被证明可以使用少量学习来实现各种自然语言任务的出色表现,从而大大减少了将模型适应特定应用程序所需的特定任务培训示例的数量。为了进一步了解量表对少量学习的影响,我们培训了一个5400亿个参数,密集激活的变压器语言模型,我们称之为“途径”语言模型棕榈。我们使用Pathways在6144 TPU V4芯片上训练了Palm,这是一种新的ML系统,可在多个TPU POD上进行高效的训练。我们通过在数百种语言理解和产生基准的基准方面实现最先进的学习结果来证明扩展的持续好处。在这些任务中的许多任务上,Palm 540B实现了突破性的表现,在一系列多步推理任务上表现出色,在最近发布的Big-Benchmark上表现优于人类的平均人类表现。大量的大基础任务显示出与模型量表的不连续改进,这意味着当我们扩展到最大模型时,性能急剧增加。 Palm在多语言任务和源代码生成方面也具有很强的功能,我们在各种基准测试中证明了这一点。我们还提供了有关偏见和毒性的全面分析,并研究了相对于模型量表的训练数据记忆的程度。最后,我们讨论与大语言模型相关的道德考虑,并讨论潜在的缓解策略。

Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源