论文标题
有效相关系统的有效绝热连接方法。应用于Biradicals的单线差距
Efficient adiabatic connection approach for strongly correlated systems. Application to singlet-triplet gaps of biradicals
论文作者
论文摘要
强相关性可以从本质上捕获多次波函数方法,例如完整的主动空间自洽场(CASSCF)或密度矩阵重新归一化组(DMRG)。尽管如此,对强相关系统的电子结构的准确描述还需要考虑动态电子相关性,CASSCF和DMRG在很大程度上错过了。在这项工作中,提出了基于绝热连接(AC)的相关能量的新方法。 AC $ _ {\ rm n} $方法帐户用于耦合常数中所需订单n的条款帐户严格符合大小的符合性,没有不稳定性和入侵者状态。它采用了粒子孔多差随机相位近似和Cholesky分解技术,该技术导致计算成本随系统大小的第五功率而增长。多亏了AC $ _ {\ rm n} $,仅取决于单电子和两电子CAS降低密度矩阵,该方法比现有的Ab Intible动态相关方法更有效。 AC $ _ {\ rm n} $为有机有机Biradicals的单身缝隙差距提供了极好的结果。这项工作中提出的开发为准确计算数十个强相关电子的系统提供了新的观点。
Strong correlation can be essentially captured with multireference wavefunction methods such as complete active space self-consistent field (CASSCF) or density matrix renormalization group (DMRG). Still, an accurate description of the electronic structure of strongly correlated systems requires accounting for the dynamic electron correlation, which CASSCF and DMRG largely miss. In this work a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The AC$_{\rm n}$ method accounts for terms up to the desired order n in the coupling constant, is rigorously size-consistent, free from instabilities and intruder states. It employs the particle-hole multireference random phase approximation and the Cholesky decomposition technique, which leads to a computational cost growing with the fifth power of the system size. Thanks to AC$_{\rm n}$ depending solely on one- and two-electron CAS reduced density matrix, the method is much more efficient than existing ab initio dynamic correlation methods for strong correlation. AC$_{\rm n}$ affords excellent results for singlet-triplet gaps of challenging organic biradicals. Development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons.