论文标题

非convex排名良好的广义矩阵完成的新的复杂度度量

A New Complexity Metric for Nonconvex Rank-one Generalized Matrix Completion

论文作者

Zhang, Haixiang, Yalcin, Baturalp, Lavaei, Javad, Sojoudi, Somayeh

论文摘要

在这项工作中,我们为在对称和不对称情况下的重要一类低级别基质优化问题开发了新的复杂度度量,其中该指标旨在量化每个问题的非convex优化景观的复杂性以及本地搜索方法在解决问题方面的成功。现有文献集中在两个复杂性范围上。 RIP常数通常用于表征矩阵传感问题的复杂性。另一方面,在分析矩阵完成问题时,使用不连贯性和采样率。提出的复杂性度量有可能概括这两个概念,并且还适用于更大的问题。为了在数学上研究该指标的属性,我们专注于排名$ 1 $ $ 1 $的通用矩阵完成问题,并说明了新的复杂度度量对三种实例的有用性,即,具有RIP条件的实例,实例遵守Bernoulli采样模型,以及一个合成示例。我们表明,即使其他现有条件无法提供理论保证,复杂性度量在三种情况下表现出一致的行为。这些观察结果表明,新的复杂度度量有可能推广针对不同应用提出的各种优化复杂性条件。此外,我们建立理论结果,以根据所提出的复杂性度量为伪造解决方案提供足够和必要的条件。这与未能提供任何必要条件的RIP和不一致条件形成对比。

In this work, we develop a new complexity metric for an important class of low-rank matrix optimization problems in both symmetric and asymmetric cases, where the metric aims to quantify the complexity of the nonconvex optimization landscape of each problem and the success of local search methods in solving the problem. The existing literature has focused on two complexity bounds. The RIP constant is commonly used to characterize the complexity of matrix sensing problems. On the other hand, the incoherence and the sampling rate are used when analyzing matrix completion problems. The proposed complexity metric has the potential to generalize these two notions and also applies to a much larger class of problems. To mathematically study the properties of this metric, we focus on the rank-$1$ generalized matrix completion problem and illustrate the usefulness of the new complexity metric on three types of instances, namely, instances with the RIP condition, instances obeying the Bernoulli sampling model, and a synthetic example. We show that the complexity metric exhibits a consistent behavior in the three cases, even when other existing conditions fail to provide theoretical guarantees. These observations provide a strong implication that the new complexity metric has the potential to generalize various conditions of optimization complexity proposed for different applications. Furthermore, we establish theoretical results to provide sufficient and necessary conditions for the existence of spurious solutions in terms of the proposed complexity metric. This contrasts with the RIP and incoherence conditions that fail to provide any necessary condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源