论文标题

AAAI SSS-22关于关闭评估循环的研讨会:沟通能力和意图在人机团队中

AAAI SSS-22 Symposium on Closing the Assessment Loop: Communicating Proficiency and Intent in Human-Robot Teaming

论文作者

Goodrich, Michael, Crandall, Jacob, Steinfeld, Aaron, Yanco, Holly

论文摘要

拟议的研讨会集中在(a)从人类到机器人的熟练程度以及(b)将意图从人类到机器人的意图。例如,机器人应该如何在新任务上传达预测的能力?它应该如何报告刚刚完成的任务的绩效?机器人应该如何根据人类的意图和价值来适应其熟练程度的标准? 人工智能,机器人技术,HRI和认知科学的社区已经解决了相关问题,但是尚无商定评估能力和基于意图的互动的标准。由于各种原因,这是针对人类机器人互动的紧迫挑战。先前的工作表明,可以评估其性能的机器人可以改变人类对机器人的看法和控制分配的决定。在机器人技术中,还有大量证据表明,准确设定人类期望至关重要,尤其是当熟练程度低于人类期望时。此外,熟练度评估取决于背景和意图,人类队友可能会提高或降低绩效标准,适应风险和不确定性的容忍度,需求预测性评估,这些评估会影响注意力分配或重新评估或适应意图。

The proposed symposium focuses understanding, modeling, and improving the efficacy of (a) communicating proficiency from human to robot and (b) communicating intent from a human to a robot. For example, how should a robot convey predicted ability on a new task? How should it report performance on a task that was just completed? How should a robot adapt its proficiency criteria based on human intentions and values? Communities in AI, robotics, HRI, and cognitive science have addressed related questions, but there are no agreed upon standards for evaluating proficiency and intent-based interactions. This is a pressing challenge for human-robot interaction for a variety of reasons. Prior work has shown that a robot that can assess its performance can alter human perception of the robot and decisions on control allocation. There is also significant evidence in robotics that accurately setting human expectations is critical, especially when proficiency is below human expectations. Moreover, proficiency assessment depends on context and intent, and a human teammate might increase or decrease performance standards, adapt tolerance for risk and uncertainty, demand predictive assessments that affect attention allocation, or otherwise reassess or adapt intent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源